Worksheet \# 13: Implicit Differentiation and Inverse Functions

1. Find the derivative of y with respect to x :
(a) $x^{\frac{2}{3}}+y^{\frac{2}{3}}=\pi^{\frac{2}{3}}$.
(b) $e^{y} \sin (x)=x+x y$.
(c) $\cos (x y)=1+\sin (y)$.
2. Consider the ellipse given by the equation $\frac{(x-2)^{2}}{25}+\frac{(y-3)^{2}}{81}=1$.
(a) Find the equation of the tangent line to the ellipse at the point (u, v) where $u=4$ and $v>0$.
(b) Sketch the ellipse and the line to check your answer.
3. Find the derivative of $f(x)=\pi^{\tan ^{-1}(\omega x)}$, where ω is a constant.
4. Let (a, b) be a point in the circle $x^{2}+y^{2}=144$. Use implicit differentiation to find the slope of the tangent line to the circle at (a, b).
5. Let $f(x)$ be an invertible function such that $g(x)=f^{-1}(x), f(3)=\sqrt{5}$ and $f^{\prime}(3)=-\frac{1}{2}$. Using only this information find the equation of the tangent line to $g(x)$ at $x=\sqrt{5}$.
6. Let $y=f(x)$ be the unique function satisfying $\frac{1}{2 x}+\frac{1}{3 y}=4$. Find the slope of the tangent line to $f(x)$ at the point $\left(\frac{1}{2}, \frac{1}{9}\right)$.
7. The equation of the tangent line to $f(x)$ at the point $(2, f(2))$ is given by the equation $y=-3 x+9$. If $G(x)=\frac{x}{4 f(x)}$, find $G^{\prime}(2)$.
8. Differentiate both sides of the equation, $V=\frac{4}{3} \pi r^{3}$, with respect to V and find $\frac{d r}{d V}$ when $r=8 \sqrt{\pi}$.
9. Use implicit differentiation to find the derivative of $\arctan (x)$. Thus if $x=\tan (y)$, use implicit differentiation to compute $d y / d x$. Can you simplify to express $d y / d x$ in terms of x ?
10. (a) Compute $\frac{d}{d x} \arcsin (\cos (x))$.
(b) Compute $\frac{d}{d x}(\arcsin (x)+\arccos (x))$. Give a geometric explanation as to why the answer is 0 .
(c) Compute $\frac{d}{d x}\left(\tan ^{-1}\left(\frac{1}{x}\right)+\tan ^{-1}(x)\right)$ and simplify to show that the derivative is 0 . Give a geometric explanation of your result.
11. Consider the line through $(0, b)$ and $(2,0)$. Let θ be the directed angle from the x-axis to this line so that $\theta>0$ when $b<0$. Find the derivative of θ with respect to b.
12. Let f be defined by $f(x)=e^{-x^{2}}$.
(a) For which values of x is $f^{\prime}(x)=0$
(b) For which values of x is $f^{\prime \prime}(x)=0$
13. The notation $\tan ^{-1}(x)$ is ambiguous. It is not clear if the exponent -1 indicates the reciprocal or the inverse function. If we allow both interpretations, how many different ways can you (correctly) compute the derivative $f^{\prime}(x)$ for

$$
f(x)=\left(\tan ^{-1}\right)^{-1}(x) ?
$$

In order to avoid this ambiguity, we will generally use $\cot (x)$ for the reciprocal of $\tan (x)$ and $\arctan (x)$ for the inverse of the tangent function restricted to the domain $(-\pi / 2, \pi / 2)$.

MathExcel Worksheet \# 13 Supplemental Problems

14. Use implicit differentiation to find $\frac{d y}{d x}$ and $\frac{d x}{d y}$ for each of the following functions:
(a) $y \cos (x)+3 x=e^{y}(1+x)-y$
(b) $y^{2}-3 x y+x^{2}=\tan (x)+y$
(c) $x^{5}+e^{y^{2}}-y \sin (1+x)=\cos (y+x)-x y^{3}$
(d) $e^{y+x^{2}}-x-4 y^{2} \cot (x)=2^{45}$
15. Use implicit differentiation to find the derivative of $\operatorname{arccot}(x)$ by considering $x=\cot (y)$. (Hint: After completing the differentiation, you may want to draw a certain triangle.)
